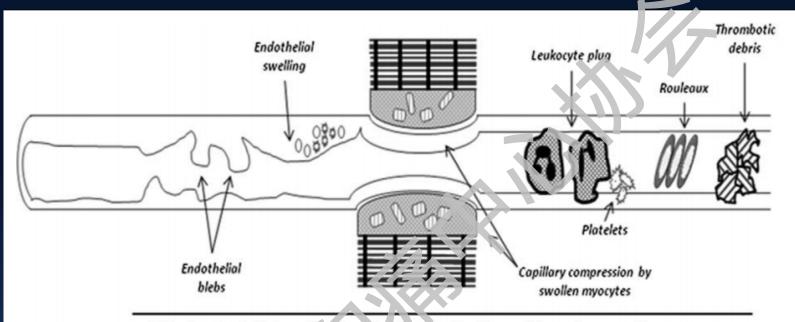
No reflow in ACS: Treatment strategies and Developments

Jian Liu, MD FACC FESC FSCAI Chief Physician, Professor of Medicine Department of Cardiology, Peking University People's Hospital

Epidemiology

- No-reflow is defined as a failure to restore antegrade normal doronary flow despite appropriate treatment of coronary obstruction.
- The prevalence of this complication occurs in 0.6% to 5% of PCIs.
- The incidence of no-reflow appears to be highest in patients undergoing PCI of SVGs, during acute myocardial infarction (AMI) or during rotational atherectomy .
- It can occur in as high as 50% of PCI cases involving the treatment of thrombuscontaining lesions .


A history of diabetes mellitus, or the absence of preinfarct angina, was found to increase the risk of no-reflow.

Mechanisms responsible for No-Reflow

✓ Mechanical obstruction for a stal embolization of thrombus and/or atherosclerotic debris.

✓ Vascular auto-regulation. Severe micro-vascular dysfunction due to alphaadrenergic macro- and micro-vascular constriction and vasospasm.

✓ Extrinsic coaguition pathway. Endothelial cell dysfunction/vasoconstriction induces expressive of TF leading to thrombosis.

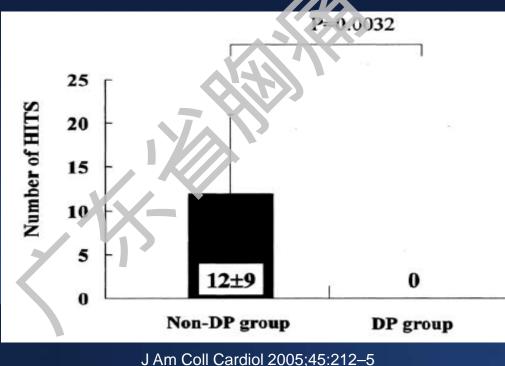
北京大学人氏医

Leuk cyte otherence, platelet thrombi and free radicals. Oxygen free adical-mediated endothelial injury. Capillary plugging by red cells and activated neutrophils.

ANGIOLOGY March 2014 vol. 65 no. 3 180-189

Pathophysiology

- Platelet aggregation
- Distal embolization
- Spasm of microcirculation
- Neutrophilic plugging
 - Tissue edema
- increased oxidative stress
 - --a combination of trese factors



Piana RN, et al. Circulation 1994;89:2514–8. Taniyama Y, et al. J Am Coll Cardiol 1997;30:1193–9. Engler RL, et al. Am J Pathol 1983;111:98–111.

Distal embolization

- Emboli originate from thrombus and atherosclerotic plaques
- A small number of emboli is unlikely to affect coronary blood flow
- Emboli (>200 μm diameter) can obstruct pre-arterioles, causing infarctlets
- Doppler guidewire in patients undergoing PPCI allows detection of highintensity transient signals and counting of embolic particles
 - Average number of emboli throughout PPCK is 12
 - However, none detected in patients with distal protection device

Independent predictors of distal embolization: thrombus

- Angiographic thrombus with greatest linear dimension >3 times reference lumen diameter
- Cutoff pattern –No taper before occlusion
- Accumulated thrombus proximal to lesion
- Floating thrombus
- Persistent contrast medium distal to the obstruction
- Reference lumen diameter >4 mm

CHEST 2002; 122:1322-1332

Risk Factors of No-Reflow

- Thrombus-containing lesions
- Degenerative SVG grafts
- PCI for AMI
- Rotablator atherectomy
- Lipid pool-like images on intravascular ultrasound

High-risk clinical status

Klein LW, et al. Catheter Cardiovasc Interv 2003;60:194–201.

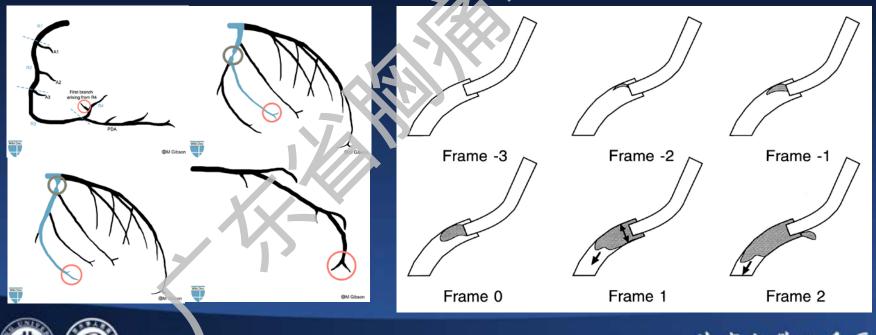
Clinical Risk Factors of No-Reflow

AMI PPCI

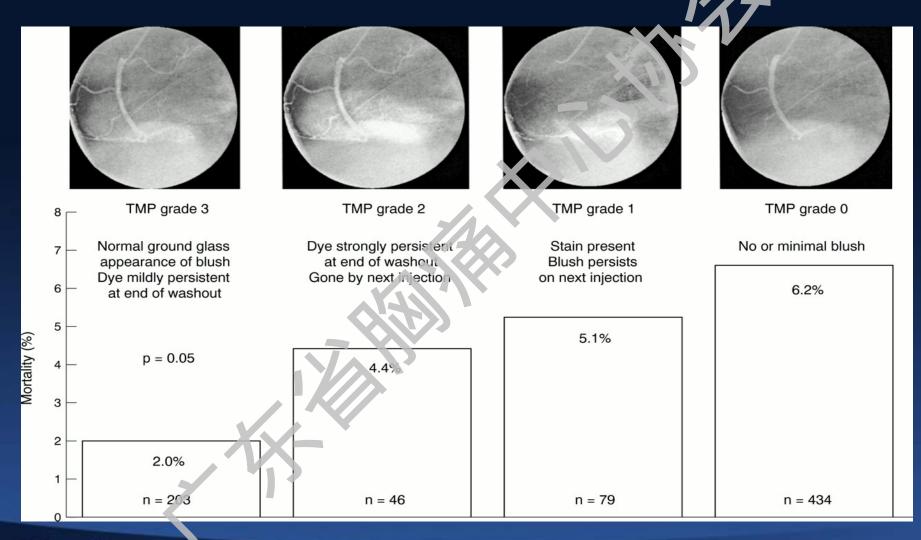
- Angina after MI
- Unstable angina
- Cardiac shock
- Hyperglycemia
- Hyper- TC, TG,LDL Hyper - NT pro BNP

Predictors of no-reflow

- Killip class
- Number of Q waves
- Wall motion score on UCG
- Initial CAG show TIML grade flow

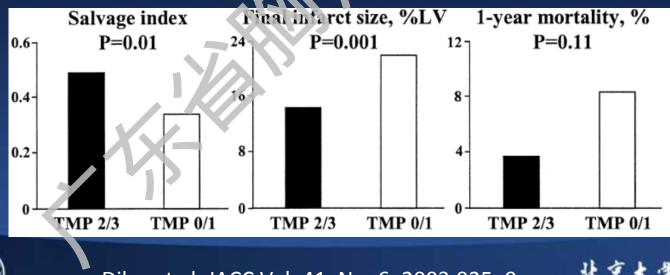

Preinfarction argue a: attenuate no-reflow, due to inchemia preconditioning

TIMI frame count


- TIMI frame count is defined as the number of cineframes required for contrast to reach a standardized distal coronary landmark in the culprit vessel.
- The number is expressed based upon a cinet limit rate of 30 frames/second.

C. Michael Gibson et al. Circulation. 1996;93:879-888 http://www.wikidoc.org/index.php/TIMI_frame_count_%28TFC%29

TIMI myocardial perfusion (TMP) grades



MARK A APPLEBY et al. Heart 2001;86:485-486

TIMI myocardial perfusion grade (TMPG) (or myocardial blush grade

- A novel technique to assess myocardial perfusion or "blush" on a coronary angiogram.
- TMP grade correlates with the final infarct size in patients with AMI treated with thrombolysis.
- Also a reliable indicator of the degree of myocardial salvage achieved with reperfusion therapy

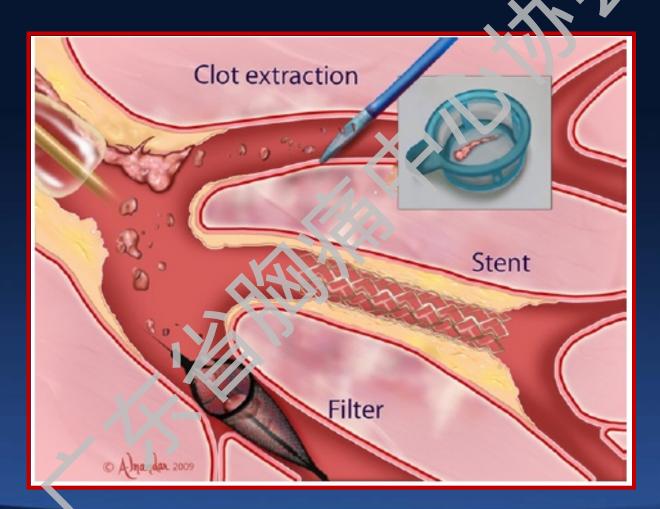
Dibraet al. JACC Vol. 41, No. 6, 2003:925–9

Prevention

The use of thrombectomy

Distal embolic protection

Direct stenting


Systemic infusion of glycoprotein IIb/IIIa (GP IIb/IIIa) inhibitors

Intracoronary infusion of vasodilating or antithrombotic/thrombolytic agents

Mechanical Strategies to Prevent Reperfusion No-Reflow



Jeffe R. et al. J Am Coll Cardiol Intv 2010;3:695–704

Thrombectomy

- For patients undergoing primary PCI, we suggest not performing routine manual thrombectomy (thrombus aspiration; aspiration thrombectomy).
- While thrombus burden can be reduced by using manual thrombectomy, the evidence does not demonstrate a significant benefit from its routine use.
 - With regard to mechanical theolytic) thrombectomy, the results of randomized tracs do not show benefit in the aggregate.

2015 American College of Cardiology/American Heart Association/Society for Cardiovascular Angiography and Interventions focused update on primary PCI for patients with STEMI

TOTAL, TASTE & TAPAS trials

	Pt. of manual thrombectomy followed by PCI or PCI alone	Primary outcome	results
TOTAL	N=10732	cardio vascular death, recurrent M!, cardiogenic shock, NYHA IV heart failure	347 vs. 351 events, hazard ratio 0.9, 95% CI 0.85-1.15
TASTE	N=7244	death from any cause at 30 days; mortality at 1year	No difference between two groups
TAPAS	N=107.	myocardial blush grade of 0 or1 (absent or minimal myocardial reperfusion)	17.1%: 26.3% (p<0.001)

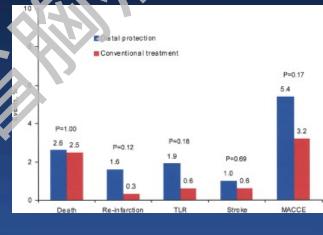
Key safety outcome of stroke occurred more often with thrombectomy
Risks of all-cause mortality (the primary end point) and MACE, a composite of death, MI, and target vessel revascularization, were lower with aspiration thrombectomy

 Johy SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med 2015; 372:1389.
Svilaas T, Vlaar PJ, van der Horst IC, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med 2008; 358:557.

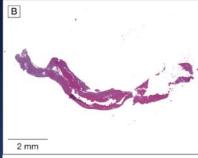
TOTAL trial: no differences between groups in primary endpoint

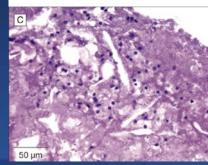
Table 1. Clinical Outcomes at 180 Days

	Thrombectomy + PCI (n = 5,033)	PCI A lone (n = 5,030)	HR (95% CI)		
Primary Outcome + Stent Thrombosis or TVR	9.9%	9.8%	1.00 (0.89-1.14)		
Cardiovascular Death	3.1%	3.5%	0.90 (0.73-1.12)		
Recurrent MI	2.0%	1.8%	1.07 (0.81-1.43)		
Cardiogenic Shock	1.8%	2.0%	0.92 (0.69-1.22)		
NYHA Class IV Heart Failure	1.9%	1.8%	1.09 (0.82-1.45)		
Stent Thrombosis	1.5%	1.7%	0.88 (0.65-1.20)		
TVR	4.5%	4.3%	1.03 (0.85-1.24)		
Major Bleeding	1.6%	1.5%	1.02 (0.75-1.40)		

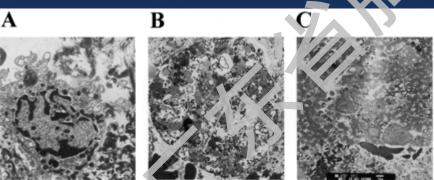

Jolly SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med 2015; 372:1389.

Distal embolic protection devices


- Increasingly used with PCI in SVGs due to the substantial potential for embolization of both thrombus and atheromatous material
- A lack of benefit in trials; do not recommend as routine adjunctive therapy to primary PCI with

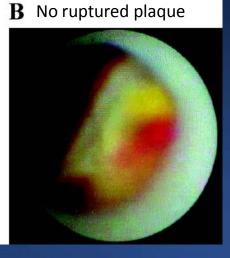

STEMI patients

EMERALD PROMISE DEDICATION to a




Stone GV, Webb J, Cox DA, et al. Distal microcirculatory protection during percutaneous coronaryintervention in acute ST-segment elevation myocardial State of the segment elevation myocardial infarction: a randomized controlled trial.JAMA 2005; 293:1063.

Type of leison


- No-reflow was most common in patients with a ruptured plaque treated without distal protection.
- Clinical benefit from distal protection (as estimated from ST segment resolution, myocardial bush grade, and left ventricular ejection fraction) was only seen in patients with ruptured plaque.

 Macrophage with platelets and fibrin (A) linit containing macrophage (B), and lipid drops (C)

A ruptured plague in IRA

Mizot I, Ueda Y, Ohtani T, et al. Distal protection improved reperfusion and reduced leftventricular dysfunction in patients with acute myocardial infarction who had angioscopicallydefined ruptured plaque. Circulation 2005; 112:1001.

Direct stenting and deferred stenting

- Direct stenting, without predilation, may lower the incidence of no-reflow.
- In high-risk STEMI patients, deferred stenting in primary PCI reduced no-reflow and increased myocardial salvage.

	Table 2 Primary and Secondar	Ang grap.	and Electr	ocardiographic Ou	tcomes	
	X	Randomly Ass	igned Groups			
	Outcome	invediate Storting (n = 49)	Deferred Stenting (n = 51)*	Odds Ratio (95% Cl)	p Value†	Registry (N = 310)
	Primary outcome					
	No- or slow-reflow (TMI 0 to 2):					
	Yes	14 (28.6)	3 (5.9)	0.16 (0.03-0.63)	0.005	45 (14.5)
	Secondary anglographic outcomes No reflow (TMI grade 0 or 1)					
	Yes	7 (14.3)	1 (2.0)	0.12 (0.03-1.02)	0.052	16 (5.2)
	Final TIMI coronary flow grade post-	. (24.0)	a (a)	0.22 (0.00 2.02)	0.002	20 (012)
K	PCR					
	3	39 (79.6)	50 (98.0)			273 (88.6)
	2	6 (12.2)	0 (0.0)	0.08 (0.01-0.65)	0.018	25 (8.1)
	0/1	4 (8.2)	1 (2.0)			10 (3.2)
Ċ.	Final TIMI myocardial blush					
	grade postPCI					
	Missing	0	1			
	3	26 (53.1)	40 (80.0) 9 (18.0)	0.28 (0.11-0.65)	0.004	
	0/1	18 (36.7) 5 (10.2)	9 (18.0) 1 (2.0)	0.28 (0.11-0.65)	0.004	_
	No- or slow-reflow (TIMI grades 0–2),	0 (10.2)	1 (2.0)			
	with MBG ≤1					
	Missing	0	1			
	Yes	5 (10.2)	1 (2.0)	0.18 (0.00-1.72)	0.195	
	No- or slow-reflow (TIMI grades 0–2), with MBG ≤ 2					
	Missing	0	1			
	Yes	12 (24.5)	2 (4.0)	0.13 (0.01-0.64)	0.007	
	All intraprocedural thrombotic events	28	9	-	-	68
	Patients with at least 1 Intraprocedural thrombotic event	16 (32.7)	5 (9.8)	0.23 (0.06-0.73)	0.010	63 (20.3)
	Distal embolization	10 (20.4)	1 (2.0)	0.08 (0.02-0.60)	0.006	5 (1.3)
	Other secondary outcome					
	ECG: resolution of ST-segment elevation 60 min post-PCI					-
	Complete, ≥70%	19 (38.8)	26 (50.0)			
	Partial, 30% to <70%	21 (42.9)	15 (28.8)	0.77 (0.37-1.6)	0.484	
	None, ≤30%	9 (18.4)	11 (21.2)			

David Carrick, et al. J Am Coll Cardiol 2014;63:2088–98

Systemic GP IIb/IIIa inhibitors

- It is unclear whether GP IIb/IIIa inhibitors when infused peripherally reduce the incidence of no-reflow
- Do not recommend the routine use of glycoprotein (GP) IIb/IIIa inhibitors

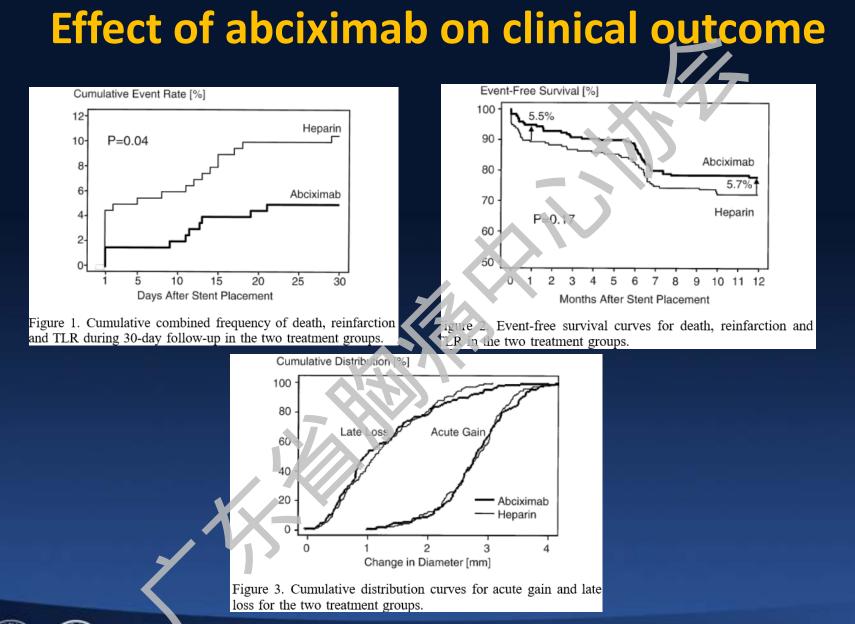
Randomized trial/ CADILLAC trials

Costantini CO, Stone GW, Mehran R, et al. Frequency, correlates, and clinical implications of myocardial perfusion after primary angioplasty and stenting, with and without glycoprotein IIb/IIIainhibition, in acute myocardial infarction. J Am Coll Cardiol 2004; 44:305.

Intracoronary administration of tirofiban for no-reflow phenomenon

	Tirofib	an	Conventional d	lrugs		Odds Ratio	Ou is ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	1.4-1 Rai 101 .95 .Cl
Chen 2012	9	27	17	24	9.1%	0.21 [0.06, 0.68]	
Fu 2012	16	43	25	43	12.8%	0.43 [0.18, 1.01]	
Guan 2012	21	40	27	40	12.3%	0.53 [0.21, 1.32]	
He 2012	11	28	24	28	8.1%	0.11 [0.03, 0.4	
Luan 2007	5	45	25	44	9.9%	0.10 [0.03, 0.29]	
Wang 2012	10	48	16	34	11.5%	0.30 [0.11, 0.7]	
Wei 2009	9	26	14	20	8.5%	0.23 (0.06, 0.79)	
Wu 2012	14	36	34	36	6.2%	0.04 [0.01, 0.18]	
Zhang 2011	17	46	29	49	13.4%	0.40 [0.18, 0.92]	
Zhang 2012	5	21	13	24	8.2%	0.26 [0.07, 0.96]	
Total (95% CI)		360		342	100.0%	0.24 [0.15, 0.37]	•
Total events	117		224	4			
Heterogeneity: Tau ²	= 0.23; Chi	² = 15.8	37, df = 9 (P = 0.	07); l² =	43%		0.01 0.1 1 10 100
Test for overall effect	t: Z = 6.20 (P < 0.0	0001)		$\langle \mathcal{D} \rangle$	$\boldsymbol{\mathcal{O}}$	0.01 0.1 1 10 100 Tirofiban Conventional drug

Figure 2 Forest plot of OR for TIMI flow transformation.


	Tirofiban Con	onventional drugs	2	Odds Ratio	Odds Ratio
Study or Subgroup	Events Total E	Events Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Chen 2012	0 27	2 24	4.2%	0.16 (0.01, 3.59)	<
He 2012	2 23	4 28	12.5%	0.46 [0.08, 2.75]	
Luan 2007	4 45	25 44	28.3%	0.07 [0.02, 0.24]	_
Wei 2009	1 26	4 20	7.7%	0.16 [0.02, 1.56]	
Wu 2012	4 3õ	24 36	25.6%	0.06 [0.02, 0.22]	
Zhang 2012	4 21	13 24	21.8%	0.20 [0.05, 0.77]	_
Total (95% CI)	183	176	100.0%	0.12 [0.06, 0.23]	◆
Total events	15	72			
Heterogeneity: Tau*+	= 0.00; Chi ² = 4.50, df =	(= 5 (P = 0.48); I ² = 0'	*		
Test for overall effect	t Z = 6.55 (P < 0.00001	J1)			0.01 0.1 1 10 100 Tirofiban Conventional drugs
					Thomball Conventional arags
THE 3 Forest place of OR for MAC	·C				

法京大学人民

Figure 3 Forest plot of OR for MACE.

Qin et al. BMC Cardiovascular Disorders 2013, 13:68

Neumann J, Blasini R, Schmitt C, et al. Effect of glycoprotein IIb/IIIa receptor blockade onrecovery of coronary flow and left ventricular function after the placement of coronary-artery stentsin acute myocardial infarction. Circulation 1998; 98:2695.

Intracoronary infusions: Vasodilator therapies- adenosine & varapamil

- Adenosine and verapamil are of uncertain benefit when given for slow coronary flow in STEMP.
- However, we use these agents from time to time despite convincing evidence of benefit.

Either agent reduced short-term, all-cause mortality or non-fatal myocardial interction; In addition, there was an increase in the risk of adverse effects such as bradycardia or hypotension with adenosine.

Adenosine improves post-procedural coronary flow

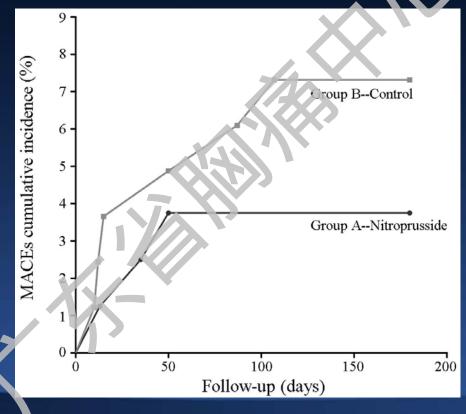
Mortality

	adenos	sine	place	bo		Odds Patio		Odd	s Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-P, Fixed, 35% CI		M-H, Fix	ed, 95% (3	
AMISTAD I	10	119	6	117	3.7%	1.70 [0.60, 4.83]		-	•		
AMISTAD II	146	1414	83	703	65.7%	0.86 [0.85, 1.14]					
ATTACC	32	302	39	306	27.0 k	0.81 [0.49, 1.33]		-	•		
Desmet	2	56	2	54	1.3%	0.36 [0.13, 7.09]			+		
Fokkema	3	226	2	222	1.3%	1.48 [0.24, 8.94]			+	-	
Grygier	0	35	0	35		Not estimable					
Marzilli	0	27	5	-27	. 6%	0.07 [0.00, 1.42]	•	•	+		
Stoel	3	27	1	22	0.6%	2.63 [0.25, 27.19]			+		
Vijayalakshmi	0	51	- 1	50	1.0%	0.32 [0.01, 8.05]					
Total (95% CI)		225 /		1536	100.0%	0.87 [0.69, 1.09]			•		
Total events	196		1.35								
Heterogeneity: Chi ² =	5.90, df =	7 (P =	0.55), I ² =	= 0%			0.04	-		1	400
Test for overall effect:	Z=1.20	P = 0.2					0.01	0.1	1	10	100
							Favou	rs Adenosin	e Favo	urs P	lacebo

Eliano Pio Navaresea, et al. Atherosclerosis 2012; 222: 1–7

Adenosine improves post-procedural cororary flow

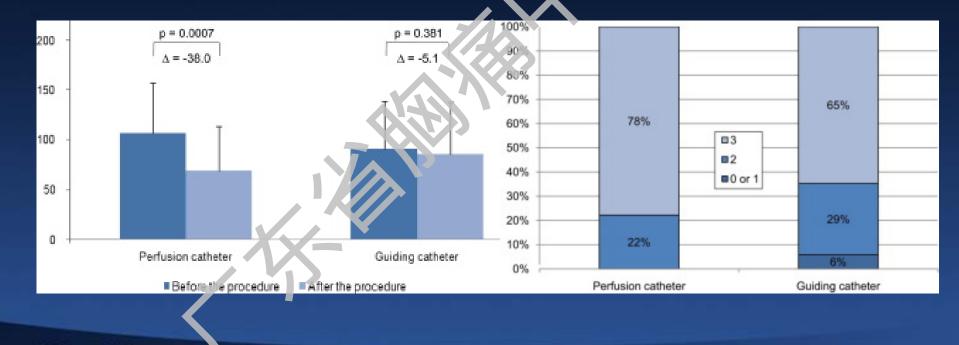
No-reflow


	adenos	sine	place	bo		Orlas Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M H, Fixeu, 95% Cl		M-H, Fixe	d, 95% Cl	
AMISTAD I	0	119	6	117	41.4%	0.07 (0.00, 1.29]	←	-	-	
Fokkema	2	226	1	222	6.3%	1.97 [0.18, 21.92]				
Marzilli	1	27	7	27	42.7%	0.11 [0.01, 0.97]		-		
Tian	0	12	0	14		Not estimable				
Vijayalakshmi	0	51	1	50	9.5%	0.32 [0.01, 8.05]		•		
Total (95% CI)		435		430	190.0%	0.23 (0.08, 0.70)		•		
Total events	3		15							
Heterogeneity: Chi2=	4.16, df=	3 (P 🐃	0.24) [•] ² =	28%				04	10 100	
Test for overall effect	-	-					0.01 Favou	0.1 rs Adenosine	Favours Placebo	

Eliano Pio Navaresea, et al. Atherosclerosis 2012; 222: 1–7

Intracoronary nitroprusside

Doses of 50 to200 μg, has shown promising results when given alone or with intracoronary adenosine



J Am Coll Cardiol 2001; 37:1335 Experimental and Therapeutic Medicine 6.2 (2013): 479-484.

Intracoronary infusions: Antithrombotic/thrombolytic therapies

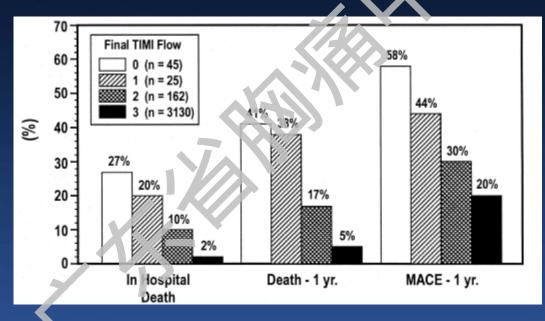
Intracoronary abciximab and low dose intracoronary streptokinase (250,000 U) have the ability to improve microvascular perfusion.

N Engl J Med 2007; 356:1823 JACC Cardiovasc Interv 2010; 3:928

Chronic statin therapy,

- An observational study from Japan of 298 consecutive patients.
- Statin-treated patients had a much lower rate of noreflow (9 versus 35 percent), better wall motion, and a higher left ventricular ejection fraction.
- Statin therapy reduce myocardial injury, stabilizes plaque after PCI.

Support treatment For those patients with hypotension and/or hypoperfusion, intravenous vasopressors, inotropic agents, and IABP support may be of benefit.



Prognosis

No-reflow usually presents with acute ischemia, EKG changes, chest pain, atrioventricular block, and hypotension.

The occurrence of no-reflow has been associated with adverse short- and long-term outcomes.

p for trend <0.0001 for all three outcomes.

法京大学人民

J Am Coll Cardiol. 2003 Nov 19;42(10):1739-46.

Prognosis

No-reflow has been associated with an increase in acute MI of

up to 32% and a 15% higher incidence of death.

The long-term detrimental effect of no-reflow has been documented to include uncreased risk for cardiac death, congestive heart failure malignant arrhythmias and decrease in ejection fraction

Prognosis of No-reflow during PCI in 1 and 5 years

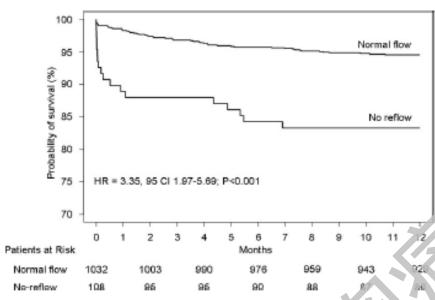
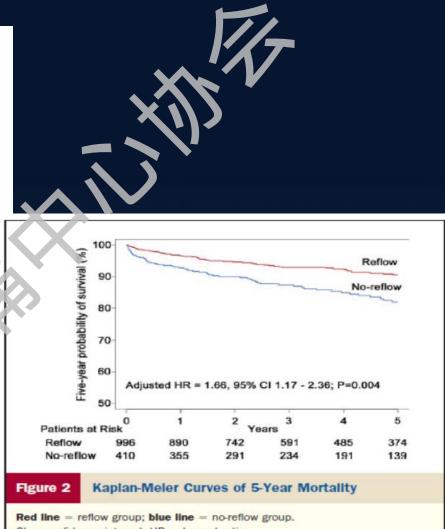



Figure 4. Probability of 1-year survival among patients with normal flow and no reflow after primary PCI. HR indicates haz and ratio.

CI = confidence interval; HR = hazard ratio.

Gjin C, etal, Cir Cardiovasc Interv, 2010,3,27-33

SUMMARY and RECOMMENDATIONS PCI in STEMI patients establishes normal or near normal antegrade blood flow, as assessed by the Thrombolysis in Myocardial Infarction (TIMI) flow grade 3, in over 90 percent of cases. The most common causes of TIMI flow grade ≤2 are persistent stenosis, thrombus, dissection spasm, or distal macroembolism. Age \geq 70 years, diabetes, longer time to reperfusion, initial TIMI flow grade ≤1, left vertricular ejection fraction <50 percent, heart failure on presentation, and incomplete ST segment elevation resolution are predictors of suboptimal reperfusion.

SUMMARY and RECOMMENDATIONS

- Direct stenting lessens the likelihood of no-reflow
- The benefit ofglycoprotein (GP) IIb/IIIa inhibitors or the intracoronary infusion of adenosine remains speculative.
- We suggest not routinely performing thrombus aspiration in primary PCI. It is reasonable to use aspiration thrombectomy in patients with a large thrombus burden.
- Distal embolic protection does not appear to protect against noreflow in the native coronary circulation but is effective in SVGs.
- Patients with hypotension and/or hypoperfusion should be treated with the same approach used in other patients with cardiogenic shock following acute myocardial infarction.

Thank you for your attention !

